Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289969

RESUMO

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Camundongos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Cisteína/genética , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética
2.
Nat Commun ; 14(1): 3416, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296134

RESUMO

Quinol-dependent nitric oxide reductases (qNORs) are considered members of the respiratory heme-copper oxidase superfamily, are unique to bacteria, and are commonly found in pathogenic bacteria where they play a role in combating the host immune response. qNORs are also essential enzymes in the denitrification pathway, catalysing the reduction of nitric oxide to nitrous oxide. Here, we determine a 2.2 Å cryoEM structure of qNOR from Alcaligenes xylosoxidans, an opportunistic pathogen and a denitrifying bacterium of importance in the nitrogen cycle. This high-resolution structure provides insight into electron, substrate, and proton pathways, and provides evidence that the quinol binding site not only contains the conserved His and Asp residues but also possesses a critical Arg (Arg720) observed in cytochrome bo3, a respiratory quinol oxidase.


Assuntos
Hidroquinonas , Óxido Nítrico , Óxido Nítrico/metabolismo , Hidroquinonas/química , Oxirredutases/metabolismo , Bactérias/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(30): e2205664119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862453

RESUMO

Many enzymes utilize redox-coupled centers for performing catalysis where these centers are used to control and regulate the transfer of electrons required for catalysis, whose untimely delivery can lead to a state incapable of binding the substrate, i.e., a dead-end enzyme. Copper nitrite reductases (CuNiRs), which catalyze the reduction of nitrite to nitric oxide (NO), have proven to be a good model system for studying these complex processes including proton-coupled electron transfer (ET) and their orchestration for substrate binding/utilization. Recently, a two-domain CuNiR from a Rhizobia species (Br2DNiR) has been discovered with a substantially lower enzymatic activity where the catalytic type-2 Cu (T2Cu) site is occupied by two water molecules requiring their displacement for the substrate nitrite to bind. Single crystal spectroscopy combined with MSOX (multiple structures from one crystal) for both the as-isolated and nitrite-soaked crystals clearly demonstrate that inter-Cu ET within the coupled T1Cu-T2Cu redox system is heavily gated. Laser-flash photolysis and optical spectroscopy showed rapid ET from photoexcited NADH to the T1Cu center but little or no inter-Cu ET in the absence of nitrite. Furthermore, incomplete reoxidation of the T1Cu site (∼20% electrons transferred) was observed in the presence of nitrite, consistent with a slow formation of NO species in the serial structures of the MSOX movie obtained from the nitrite-soaked crystal, which is likely to be responsible for the lower activity of this CuNiR. Our approach is of direct relevance for studying redox reactions in a wide range of biological systems including metalloproteins that make up at least 30% of all proteins.


Assuntos
Cobre , Nitrito Redutases , Nitritos , Catálise , Cobre/química , Nitrito Redutases/química , Nitritos/química , Oxirredução , Análise Espectral
4.
Curr Opin Struct Biol ; 75: 102420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35841747

RESUMO

Metalloproteins comprise at least a third of all proteins that utilize redox properties of transition metals on their own or as parts of cofactors. The development of third generation storage ring sources and X-ray free-electron lasers with femtosecond pulses in the first decade of the 21st century has transformed metalloprotein crystallography. In the past decade, cryogenic-electron microscopy single-particle analysis, which does not require crystallization of biological samples has been extensively utilized, particularly for membrane-bound metalloprotein systems. Here, we explore recent frontiers in metalloprotein crystallography and cryogenic electron microscopy, organized for convenience under three metalloprotein-centered biological cycles, focusing on contributions from each technique, their synergy and the ability to preserve metals' redox states when subjected to a particular probe.


Assuntos
Metaloproteínas , Microscopia Crioeletrônica , Cristalização , Cristalografia , Cristalografia por Raios X , Metaloproteínas/química , Raios X
5.
Biology (Basel) ; 11(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892964

RESUMO

Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.

6.
Sci Adv ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523860

RESUMO

Copper-containing nitrite reductases (CuNiRs), encoded by nirK gene, are found in all kingdoms of life with only 5% of CuNiR denitrifiers having two or more copies of nirK Recently, we have identified two copies of nirK genes in several α-proteobacteria of the order Rhizobiales including Bradyrhizobium sp. ORS 375, encoding a four-domain heme-CuNiR and the usual two-domain CuNiR (Br 2DNiR). Compared with two of the best-studied two-domain CuNiRs represented by the blue (AxNiR) and green (AcNiR) subclasses, Br 2DNiR, a blue CuNiR, shows a substantially lower catalytic efficiency despite a sequence identity of ~70%. Advanced synchrotron radiation and x-ray free-electron laser are used to obtain the most accurate (atomic resolution with unrestrained SHELX refinement) and damage-free (free from radiation-induced chemistry) structures, in as-isolated, substrate-bound, and product-bound states. This combination has shed light on the protonation states of essential catalytic residues, additional reaction intermediates, and how catalytic efficiency is modulated.

7.
FEBS J ; 288(1): 262-280, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32255260

RESUMO

Cu-containing nitrite reductases that convert NO2- to NO are critical enzymes in nitrogen-based energy metabolism. Among organisms in the order Rhizobiales, we have identified two copies of nirK, one encoding a new class of 4-domain CuNiR that has both cytochrome and cupredoxin domains fused at the N terminus and the other, a classical 2-domain CuNiR (Br2D NiR). We report the first enzymatic studies of a novel 4-domain CuNiR from Bradyrhizobium sp. ORS 375 (BrNiR), its genetically engineered 3- and 2-domain variants, and Br2D NiR revealing up to ~ 500-fold difference in catalytic efficiency in comparison with classical 2-domain CuNiRs. Contrary to the expectation that tethering would enhance electron delivery by restricting the conformational search by having a self-contained donor-acceptor system, we demonstrate that 4-domain BrNiR utilizes N-terminal tethering for downregulating enzymatic activity instead. Both Br2D NiR and an engineered 2-domain variant of BrNiR (Δ(Cytc-Cup) BrNiR) have 3 to 5% NiR activity compared to the well-characterized 2-domain CuNiRs from Alcaligenes xylosoxidans (AxNiR) and Achromobacter cycloclastes (AcNiR). Structural comparison of Δ(Cytc-Cup) BrNiR and Br2D NiR with classical 2-domain AxNiR and AcNiR reveals structural differences of the proton transfer pathway that could be responsible for the lowering of activity. Our study provides insights into unique structural and functional characteristics of naturally occurring 4-domain CuNiR and its engineered 3- and 2-domain variants. The reverse protein engineering approach utilized here has shed light onto the broader question of the evolution of transient encounter complexes and tethered electron transfer complexes. ENZYME: Copper-containing nitrite reductase (CuNiR) (EC 1.7.2.1). DATABASE: The atomic coordinate and structure factor of Δ(Cytc-Cup) BrNiR and Br2D NiR have been deposited in the Protein Data Bank (http://www.rcsb.org/) under the accession code 6THE and 6THF, respectively.


Assuntos
Achromobacter cycloclastes/química , Alcaligenes/química , Proteínas de Bactérias/química , Bradyrhizobium/química , Cobre/química , Nitrito Redutases/química , Achromobacter cycloclastes/enzimologia , Achromobacter cycloclastes/genética , Alcaligenes/enzimologia , Alcaligenes/genética , Sequência de Aminoácidos , Azurina/química , Azurina/genética , Azurina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Domínio Catalítico , Clonagem Molecular , Cobre/metabolismo , Cristalografia por Raios X , Citocromos c/química , Citocromos c/genética , Citocromos c/metabolismo , Elétrons , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas/métodos , Domínios e Motivos de Interação entre Proteínas , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Genética Reversa/métodos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
EBioMedicine ; 59: 102980, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32862101

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease as well as Lou Gehrig's disease, is a progressive neurological disorder selectively affecting motor neurons with no currently known cure. Around 20% of the familial ALS cases arise from dominant mutations in the sod1 gene encoding superoxide dismutase1 (SOD1) enzyme. Aggregation of mutant SOD1 in familial cases and of wild-type SOD1 in at least some sporadic ALS cases is one of the known causes of the disease. Riluzole, approved in 1995 and edaravone in 2017 remain the only drugs with limited therapeutic benefits. METHODS: We have utilised the ebselen template to develop novel compounds that redeem stability of mutant SOD1 dimer and prevent aggregation. Binding modes of compounds have been visualised by crystallography. In vitro neuroprotection and toxicity of lead compounds have been performed in mouse neuronal cells and disease onset delay of ebselen has been demonstrated in transgenic ALS mice model. FINDING: We have developed a number of ebselen-based compounds with improvements in A4V SOD1 stabilisation and in vitro therapeutic effects with significantly better potency than edaravone. Structure-activity relationship of hits has been guided by high resolution structures of ligand-bound A4V SOD1. We also show clear disease onset delay of ebselen in transgenic ALS mice model holding encouraging promise for potential therapeutic compounds. INTERPRETATION: Our finding established the new generation of organo-selenium compounds with better in vitro neuroprotective activity than edaravone. The potential of this class of compounds may offer an alternative therapeutic agent for ALS treatment. The ability of these compounds to target cysteine 111 in SOD may have wider therapeutic applications targeting cysteines of enzymes involved in pathogenic and viral diseases including main protease of SARS-Cov-2 (COVID-19). FUNDING: Project funding was supported by the ALS Association grant (WA1128) and Fostering Joint International Research (19KK0214) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Compostos Organosselênicos/uso terapêutico , Superóxido Dismutase-1/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/patologia , Animais , Azóis/química , Azóis/metabolismo , Azóis/uso terapêutico , Betacoronavirus/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Dimerização , Modelos Animais de Doenças , Estabilidade Enzimática , Isoindóis , Camundongos , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2 , Superóxido Dismutase-1/genética , Taxa de Sobrevida , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo
9.
iScience ; 23(6): 101159, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32480125

RESUMO

Mislocalization, cleavage, and aggregation of the human protein TDP-43 is found in many neurodegenerative diseases. As is the case with many other proteins that are completely or partially structurally disordered, production of full-length recombinant TDP-43 in the quantities necessary for structural characterization has proved difficult. We show that the full-length TDP-43 protein and two truncated N-terminal constructs 1-270 and 1-263 can be heterologously expressed in E. coli. Full-length TDP-43 could be prevented from aggregation during purification using a detergent. Crystals grown from an N-terminal construct (1-270) revealed only the N-terminal domain (residues 1-80) with molecules arranged as parallel spirals with neighboring molecules arranged in head-to-tail fashion. To obtain detergent-free, full-length TDP-43 we mutated all six tryptophan residues to alanine. This provided sufficient soluble protein to collect small-angle X-ray scattering data. Refining relative positions of individual domains and intrinsically disordered regions against this data yielded a model of full-length TDP-43.

10.
Acta Crystallogr D Struct Biol ; 76(Pt 6): 594-607, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32496220

RESUMO

Methionine adenosyltransferase (MAT) deficiency, characterized by isolated persistent hypermethioninemia (IPH), is caused by mutations in the MAT1A gene encoding MATαl, one of the major hepatic enzymes. Most of the associated hypermethioninemic conditions are inherited as autosomal recessive traits; however, dominant inheritance of hypermethioninemia is caused by an Arg264His (R264H) mutation. This mutation has been confirmed in a screening programme of newborns as the most common mutation in babies with IPH. Arg264 makes an inter-subunit salt bridge located at the dimer interface where the active site assembles. Here, it is demonstrated that the R264H mutation results in greatly reduced MAT activity, while retaining its ability to dimerize, indicating that the lower activity arises from alteration at the active site. The first crystallographic structure of the apo form of the wild-type MATαl enzyme is provided, which shows a tetrameric assembly in which two compact dimers combine to form a catalytic tetramer. In contrast, the crystal structure of the MATαl R264H mutant reveals a weaker dimeric assembly, suggesting that the mutation lowers the affinity for dimer-dimer interaction. The formation of a hetero-oligomer with the regulatory MATßV1 subunit or incubation with a quinolone-based compound (SCR0911) results in the near-full recovery of the enzymatic activity of the pathogenic mutation R264H, opening a clear avenue for a therapeutic solution based on chemical interventions that help to correct the defect of the enzyme in its ability to metabolize methionine.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Glicina N-Metiltransferase/deficiência , Padrões de Herança , Metionina Adenosiltransferase/química , Domínio Catalítico , Glicina N-Metiltransferase/genética , Humanos , Metionina Adenosiltransferase/genética , Mutação , Multimerização Proteica
11.
IUCrJ ; 7(Pt 3): 557-565, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32431838

RESUMO

Copper-containing nitrite reductases (CuNiRs) are found in all three kingdoms of life and play a major role in the denitrification branch of the global nitro-gen cycle where nitrate is used in place of di-oxy-gen as an electron acceptor in respiratory energy metabolism. Several C- and N-terminal redox domain tethered CuNiRs have been identified and structurally characterized during the last decade. Our understanding of the role of tethered domains in these new classes of three-domain CuNiRs, where an extra cytochrome or cupredoxin domain is tethered to the catalytic two-domain CuNiRs, has remained limited. This is further compounded by a complete lack of substrate-bound structures for these tethered CuNiRs. There is still no substrate-bound structure for any of the as-isolated wild-type tethered enzymes. Here, structures of nitrite and product-bound states from a nitrite-soaked crystal of the N-terminal cupredoxin-tethered enzyme from the Hyphomicrobium denitrificans strain 1NES1 (Hd 1NES1NiR) are provided. These, together with the as-isolated structure of the same species, provide clear evidence for the role of the N-terminal peptide bearing the conserved His27 in water-mediated anchoring of the substrate at the catalytic T2Cu site. Our data indicate a more complex role of tethering than the intuitive advantage for a partner-protein electron-transfer complex by narrowing the conformational search in such a combined system.

13.
Commun Biol ; 3(1): 97, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139772

RESUMO

Mutations to the gene encoding superoxide dismutase-1 (SOD1) were the first genetic elements discovered that cause motor neuron disease (MND). These mutations result in compromised SOD1 dimer stability, with one of the severest and most common mutations Ala4Val (A4V) displaying a propensity to monomerise and aggregate leading to neuronal death. We show that the clinically used ebselen and related analogues promote thermal stability of A4V SOD1 when binding to Cys111 only. We have developed a A4V SOD1 differential scanning fluorescence-based assay on a C6S mutation background that is effective in assessing suitability of compounds. Crystallographic data show that the selenium atom of these compounds binds covalently to A4V SOD1 at Cys111 at the dimer interface, resulting in stabilisation. This together with chemical amenability for hit expansion of ebselen and its on-target SOD1 pharmacological chaperone activity holds remarkable promise for structure-based therapeutics for MND using ebselen as a template.


Assuntos
Azóis/química , Azóis/farmacologia , Desenho de Fármacos , Doença dos Neurônios Motores/tratamento farmacológico , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Superóxido Dismutase-1 , Substituição de Aminoácidos/genética , Azóis/síntese química , Azóis/uso terapêutico , Cristalografia por Raios X , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Isoindóis , Modelos Moleculares , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/química , Chaperonas Moleculares/uso terapêutico , Simulação de Acoplamento Molecular , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Proteínas Mutantes/química , Proteínas Mutantes/efeitos dos fármacos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/isolamento & purificação , Compostos Organosselênicos/uso terapêutico , Dobramento de Proteína/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Compostos de Enxofre/síntese química , Compostos de Enxofre/química , Superóxido Dismutase-1/química , Superóxido Dismutase-1/efeitos dos fármacos , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Termodinâmica
14.
Chem Sci ; 11(46): 12485-12492, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34094452

RESUMO

The design and synthesis of copper complexes that can reduce nitrite to NO has attracted considerable interest. They have been guided by the structural information on the catalytic Cu centre of the widespread enzymes Cu nitrite reductases but the chemically novel side-on binding of NO observed in all crystallographic studies of these enzymes has been questioned in terms of its functional relevance. We show conversion of NO2 - to NO in the crystal maintained at 170 K and present 'molecular movies' defining events during enzyme turnover including the formation of side-on Cu-NO intermediate. DFT modelling suggests that both true {CuNO}11 and formal {CuNO}10 states may occur as side-on forms in an enzymatic active site with the stability of the {CuNO}10 side-on form governed by the protonation state of the histidine ligands. Formation of a copper-nitrosyl intermediate thus needs to be accommodated in future design templates for functional synthetic Cu-NiR complexes.

15.
Q Rev Biophys ; 52: e12, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31760962

RESUMO

Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Superóxido Dismutase-1/química , Superóxido Dismutase-1/metabolismo , Animais , Fenômenos Biofísicos , Humanos
16.
Sci Adv ; 5(8): eaax1803, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489376

RESUMO

Quinol-dependent nitric oxide reductases (qNORs) are membrane-integrated, iron-containing enzymes of the denitrification pathway, which catalyze the reduction of nitric oxide (NO) to the major ozone destroying gas nitrous oxide (N2O). Cryo-electron microscopy structures of active qNOR from Alcaligenes xylosoxidans and an activity-enhancing mutant have been determined to be at local resolutions of 3.7 and 3.2 Å, respectively. They unexpectedly reveal a dimeric conformation (also confirmed for qNOR from Neisseria meningitidis) and define the active-site configuration, with a clear water channel from the cytoplasm. Structure-based mutagenesis has identified key residues involved in proton transport and substrate delivery to the active site of qNORs. The proton supply direction differs from cytochrome c-dependent NOR (cNOR), where water molecules from the cytoplasm serve as a proton source similar to those from cytochrome c oxidase.


Assuntos
Hidroquinonas/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico/fisiologia , Microscopia Crioeletrônica , Citoplasma/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Oxirredução , Oxirredutases , Prótons
17.
IUCrJ ; 6(Pt 4): 761-772, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316819

RESUMO

Copper-containing nitrite reductases (CuNiRs) that convert NO2 - to NO via a CuCAT-His-Cys-CuET proton-coupled redox system are of central importance in nitrogen-based energy metabolism. These metalloenzymes, like all redox enzymes, are very susceptible to radiation damage from the intense synchrotron-radiation X-rays that are used to obtain structures at high resolution. Understanding the chemistry that underpins the enzyme mechanisms in these systems requires resolutions of better than 2 Å. Here, for the first time, the damage-free structure of the resting state of one of the most studied CuNiRs was obtained by combining X-ray free-electron laser (XFEL) and neutron crystallography. This represents the first direct comparison of neutron and XFEL structural data for any protein. In addition, damage-free structures of the reduced and nitrite-bound forms have been obtained to high resolution from cryogenically maintained crystals by XFEL crystallography. It is demonstrated that AspCAT and HisCAT are deprotonated in the resting state of CuNiRs at pH values close to the optimum for activity. A bridging neutral water (D2O) is positioned with one deuteron directed towards AspCAT Oδ1 and one towards HisCAT N∊2. The catalytic T2Cu-ligated water (W1) can clearly be modelled as a neutral D2O molecule as opposed to D3O+ or OD-, which have previously been suggested as possible alternatives. The bridging water restricts the movement of the unprotonated AspCAT and is too distant to form a hydrogen bond to the O atom of the bound nitrite that interacts with AspCAT. Upon the binding of NO2 - a proton is transferred from the bridging water to the Oδ2 atom of AspCAT, prompting electron transfer from T1Cu to T2Cu and reducing the catalytic redox centre. This triggers the transfer of a proton from AspCAT to the bound nitrite, enabling the reaction to proceed.

18.
Acta Crystallogr D Struct Biol ; 75(Pt 7): 660-669, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31282475

RESUMO

Solute carriers are a large class of transporters that play key roles in normal and disease physiology. Among the solute carriers, heteromeric amino-acid transporters (HATs) are unique in their quaternary structure. LAT1-CD98hc, a HAT, transports essential amino acids and drugs across the blood-brain barrier and into cancer cells. It is therefore an important target both biologically and therapeutically. During the course of this work, cryo-EM structures of LAT1-CD98hc in the inward-facing conformation and in either the substrate-bound or apo states were reported to 3.3-3.5 Šresolution [Yan et al. (2019), Nature (London), 568, 127-130]. Here, these structures are analyzed together with our lower resolution cryo-EM structure, and multibody 3D auto-refinement against single-particle cryo-EM data was used to characterize the dynamics of the interaction of CD98hc and LAT1. It is shown that the CD98hc ectodomain and the LAT1 extracellular surface share no substantial interface. This allows the CD98hc ectodomain to have a high degree of movement within the extracellular space. The functional implications of these aspects are discussed together with the structure determination.


Assuntos
Cadeia Pesada da Proteína-1 Reguladora de Fusão/química , Transportador 1 de Aminoácidos Neutros Grandes/química , Domínios e Motivos de Interação entre Proteínas , Microscopia Crioeletrônica/métodos , Células HEK293 , Humanos , Modelos Moleculares
19.
Philos Trans A Math Phys Eng Sci ; 377(2147): 20190147, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31030660

RESUMO

The development of synchrotron science over the last 50 years is reviewed from the perspective of the authors' own scientific programmes. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.

20.
IUCrJ ; 6(Pt 2): 167-177, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867914

RESUMO

Structural biology continues to benefit from an expanding toolkit, which is helping to gain unprecedented insight into the assembly and organization of multi-protein machineries, enzyme mechanisms and ligand/inhibitor binding. The combination of results from X-ray free-electron lasers (XFELs), modern synchrotron crystallographic beamlines and cryo-electron microscopy (cryoEM) is proving to be particularly powerful. The highly brilliant undulator beamlines at modern synchrotron facilities have empowered the crystallographic revolution of high-throughput structure determination at high resolution. The brilliance of the X-rays at these crystallographic beamlines has enabled this to be achieved using microcrystals, but at the expense of an increased absorbed X-ray dose and a consequent vulnerability to radiation-induced changes. The advent of serial femtosecond crystallography (SFX) with X-ray free-electron lasers provides a new opportunity in which damage-free structures can be obtained from much smaller crystals (2 µm) and more complex macromolecules, including membrane proteins and multi-protein complexes. For redox enzymes, SFX provides a unique opportunity by providing damage-free structures at both cryogenic and ambient temperatures. The promise of being able to visualize macromolecular structures and complexes at high resolution without the need for crystals using X-rays has remained a dream, but recent technological advancements in cryoEM have made this come true and hardly a month goes by when the structure of a new/novel macromolecular assembly is not revealed. The uniqueness of cryoEM in providing structural information for multi-protein complexes, particularly membrane proteins, has been demonstrated by examples such as respirasomes. The synergistic use of cryoEM and crystallography in lead-compound optimization is highlighted by the example of the visualization of antimalarial compounds in cytochrome bc 1. In this short review, using some recent examples including our own work, we share the excitement of these powerful structural biology methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA